β -CYCLOLAVANDULIC ACID AND SESELIN IN THE ESSENTIAL OIL OF CARUM ROXBURGHIANUM

A. SATTAR*, M. ASHRAF*, M. K. BHATTY* and N. H. CHISTI†

*PCSIR Laboratories, Ferozepur Road, Lahore-16, Pakistan; †Department of Organic Chemistry, University of Liverpool, England

(Received 13 May 1977)

Key Word Index—Carum roxburghuanum; Umbelliferae; β -cyclolavandulic acid; seselin.

INTRODUCTION

The steam volatile oil of the seeds of Carum roxburghianum was reported [1] to contain a keto acid, $C_{10}H_{14}O_3$; mp 105-106° of undetermined structure and another compound, mp 114-115° which was thought to be p-isopropyl benzoic acid. We now present evidence for the identification of the compounds as β -cyclolavandulic acid (1; $R = CO_2H$) and seselin (4) respectively.

RESULTS

The essential oil obtained from the seeds of Carum roxburghianum was fractionally distilled at 5 mm of Hg and the fractions distilling between 82-104° on standing deposited a crystalline material. This material was dissolved in ether and extracted with dilute sodium bicarbonate solution. The aq. alkaline extract was acidified and extracted with ether. Removal of the solvent gave a solid which on recrystallisation from hexane deposited a white crystalline acid, mp 106-107°. Column chromatography of the oil over Si gel gave the acid in 15–25% yield. The acid analysed for $C_{10}H_{16}O_2$ and its UV absorption at λ_{max}^{EtOH} 223 nm (ε = 1316) and IR (CHCl₃) ν_{max} 3500–2500, 1680, 1640 cm⁻¹ indicated an α,β-unsaturated acid. Its MS showed major peaks at m/e 168 (M⁺), 153 (M⁺-15), 140 (M⁺-28), 125 (M⁺-43), 123 (M⁺-45) and 112 (M⁺-56). On catalytic hydrogenation the acid absorbed one mole of hydrogen and gave a dihydro-derivative. m/e 170 (M⁺), 137 (M⁺-15-18), 110 (M⁺-15-45) and 109 (M⁺-61). The PMR (CDCl₃, 100 MHz) spectrum revealed the presence of two quarternary methyls at δ 0.92 (6H, s), one methylene at 1.37 (2H, t, J = 6 Hz), two allylic methylene at 1.94 (2H, $\nu r.s$) and 2.34 (2H, m), one vinylic methyl at 2.06 (3H, br.s) and a carboxylic proton at 12.08 (1H, s). The natural abundance ¹³C-NMR (CDCl₃; 25.2 MHz) spectrum in FT mode supported by off resonance decoupled experiments [2, 3] gave nine resonance lines at δ 22.6 (q, C-9 and $\overline{\text{C}}$ -10, 23.8 (t, C-5), 27.9 (q, C-8), 28.7 (s, C-4), 34.9 (t, C-3), 48.4 (t, C-6), 122 (s, C-1), 149.5 (s, C-2) and 174.3 (s, C-7).

The above data pointed to structure 1 ($R = CO_2H$) for the acid which has already been isolated [4, 5] and synthesised [6, 7]. In the absence of a direct comparison, the methyl ester of the acid was ozonised [5] and a ketoester, PMR (CDCl₃; 100 MHz) δ 1.01 (6H, s, Me—C—Me), 2.10 (3H, s, COME), 2.34 (2H, s), 2.81 (2H, dd, J = 8 Hz), 3.83 (3H, s, CO₂Me) was isolated

which ruled out the possiblity of structure 2. In order to distinguish between structure 1 (R = CO₂H) and $3 (R = CO_2H)$ for the acid, the diagnostic value of the lanthanide induced shift reagents was employed. Theoretically the induced shift initiated through the functional group at C-1 would give a larger shift of the resonance signal of the C-6 methylene than that of the C-3 methylene in structure 1 and it should be the opposite case in structure 3. The induced paramagnetic shift of the resonance signals of the various protons in the alcohol 1 (R = CH,OH) derived from the acid was observed under varying concentrations of Eu(fod)₃ shift reagent. With 41.4 mg of the alcohol in CCl₄ the induced downfield shifts observed for the C-3 and C-6 allylic methylene signals were $\Delta \delta$ 0.12 and 0.34 at 5 mg; 0.23 and 0.74 at 10.8 mg and 0.54 and 1.80 at 25.2 mg concentration of the shift reagent. It was therefore evident that of the two allylic methylenes, the one with a multiplet (C-6), adjacent to another methylene (C-5), had a larger paramagnetic shift compared to the methylene (C-3) having a singlet resonance signal. This confirmed the structure 1 (R = CO₂H) for the acid although it might be present as the aldehyde 1 (R = CHO) in nature [5] but we could isolate only the acid.

Column chromatography of the essential oil of Carum roxburghianum on Si gel with hexane– Et_2O (4:1) gave a fraction which was fluorescent under UV light. The fraction deposited a white crystalline compound, mp 114–115°. The water soluble portion of the essential oil consisted mainly of the same UV fluorescent compound. The total amount of this compound was 13% of the oil. It analysed for $C_{14}H_{12}O_3$; UV λ_{max}^{EtOH} nm: 330, 293,

560 Short Reports

283, 260, IR $v_{\text{max}}^{\text{CHC1}_3}$ cm⁻¹: 1720, 1640, 1600, 1495, 1410, 1300, 1185, 1130, 1025, 855, PMR (CDCl₃, 100 MHz) δ 1.46 (6H, s), 5.67 (1H, d, J = 10 Hz), 6.17 (1H, d, J = 9 Hz), 6.66 (1H, d, J = 8 Hz), 6.85 (1H, d, J = 10 Hz), 7.18 (1H, d, J = 8 Hz), 7.57 (1H, d, J = 9 Hz), identical with seselin (4). ¹³C-NMR (CDCl₃; 25.2 MHz) gave only eight resonance lines at δ 28.2 (q), 77.3 (d), 112.8 (d). 113.5 (d), 115.3 (d), 127.8 (d), 130 (d), 143.9 (d) which could not be resolved completely. Treatment with sulphuric acid gave umbelliferone [8] which confirmed the structure

Acknowledgements—We thank Dr. R. Ramage, Robert Robinson Laboratories, University of Liverpool for his helpful discussion and PL-480 authorities for a supporting grant

REFERENCES

- Malavya, B. K. and Dutt, S. (1942) Proc. Ind. Acad Sci. 16A, 157.
- Levy, G. C. and Nelson, G. L (1972) Carbon-13 NMR for Organic Chemists. Wiley Interscience. New York.
- Strothers, J. B. (1972) Carbon-13 NMR Spectroscopy. Academic Press, New York.
- 4. Dixit, S. M., Rao, A. S. and Paknikar, S. K. (1967) Chem. Ind. (London) 1256.
- Logani, M. K., Varshney, I. P., Pandey, R. C. and Dev, S (1967) Tetrahedron Letters 2645.
- 6. Brenner, A. and Schinz, H. (1952) Helv. Chim. Acta 35, 1615
- 7. Kuhn, W. and Schinz, H. (1952) Helv. Chim. Acta 35, 2008.
- 8. Dean, F. M. (1963) Naturally Occurring Oxygen Ring Compounds p 232 Butterworths, London.

Phytochemistry, 1978, Vol 17, pp 560-561 Pergamon Press Printed in England

NEW TERPENE DERIVATIVES FROM PIQUERIA TRINERVIA*

FERDINAND BOHLMANN and ANTOINETTE SUWITA

Institute of Organic Chemistry, Technical University, D 1000 Berlin 12, Germany

(Received 9 September 1977)

Key Word Index—Piqueria trinervia; Eupatorieae; Compositae; new terpene derivatives.

Piqueria trinervia Cav. has been investigated before. Besides the widespread pentaynene, santalal and santalol [1] as well as several carquejol derivatives [2] have been reported. A new investigation of the roots yields several new terpenes, all with an unusual carbon skeleton. The ¹H-NMR-data (Tables 1 and 2) lead to the structures 1-4. From the aerial parts, besides 6 also 3 and 4 together with 5 have been isolated. While 1 and 2 are of the same skeleton as carquejol, aldehydes of the isoferulol type like 3-5 up to now only have been isolated from the

Umbelliferae [3]. A compound very similar to 2 has been found in the roots of a *Baccharis* species [4].

* Part 126 in the series 'Naturally Occurring Terpene Derivatives'; Part 125: Bohlmann, F. and Czerson, H. (1978) Phytochemistry 17, 568.

Table 1. ${}^{1}H$ -NMR-data of 1 and 2 (270 MHz, δ -values, CDCl₂)

	1	J(Hz)	2	J(Hz)
1-H	d(br) 6.74	1,6 = 8	ddd 6.02	1.2 = 2.5
2-H		-	s(br) 5 78	1.6 = 11
4-H			d(br) 3.37	1.5 = 2.5
5-H	d(br) 6.83	5.6 = 8	ddd 5.43	4.5 = 5
6-H	dd 7.12	•	d(br) 5.80	5.6 = 3
8-H	dq 5.28	8.8' = 2.3	dg 4.96	5.6 = 3
8'-H	dy 4.79	8.9 = 1.2	s(br) 4.91	
9-H	dd 1.99		s(br) 1.74	
10-H 10'-H	s 2.66		s(br) 5.30 s(br) 5.21	
OMe	s 3 80			
OAc	-		s 2.05	
OCOR'			qq 2.57 d 1 17 d 1.18	2', 3' = 7

Table 2. ¹H-NMR-data of 3-5 (270 MHz, δ-values, CDCl₃)

			,
	3	4	5
 2-Н	d(br) 5.83	d(br) 5.82	d(br) 5.81
3-H	dd 5.62	dd 5.63	dd 5.61
4-H	d(br) 5.76	d(br) 5.74	d(br) 5.74
7-H	s 1.31	s 1.31	s 1.31
8-H	s 1.26	s 1.26	s 1.25
9-H	dd 1.17	dd 2 13	s 2.15
10-H	s 10.25	s 10.25	s 10.24
OCOR'	tq 5.90	tq 6.04	gg 5.72
	s(br) 4.59	s(br) 4.18	d^{2} ,21
	s(br) 2.18	s(br) 2.15	d 1.92
OAc	s 2.13		

J (Hz): 2. 3 = 3, 5; 2, 9 = 1; 3, 4 = 10.5; 9, 10 = 1; 2', 4' = 2', 5' = 1.5.